Topology-Preserving Discrete Deformable Model: Application to Multi-segmentation of Brain MRI
نویسندگان
چکیده
Among the numerous 3D medical image segmentation methods proposed in the literature, very few have intended to provide topologically satisfying results, a fortiori for multiple object segmentation. In this paper, we present a method devoted to parallel segmentation of the main classes of cerebral tissues from 3D magnetic resonance imaging data. This method is based on a multi-class discrete deformable model strategy, starting from a topologically correct model, and guiding its evolution in a topology-preserving fashion. Validations on a commonly used cerebral image database provide promising results and justify the further development of a general methodological framework based on the concepts exposed in this preliminary work.
منابع مشابه
A knowledge-based deformable surface model with application to segmentation of brain structures in MRI
We have developed a knowledge-based deformable surface for segmentation of medical images. This work has been done in the context of segmentation of hippocampus from brain MRI, due to its challenge and clinical importance. The model has a polyhedral discrete structure and is initialized automatically by analyzing brain MRI sliced by slice, and finding few landmark features at each slice using a...
متن کاملCombining Topological Maps, Multi-Label Simple Points, and Minimum-Length Polygons for Efficient Digital Partition Model
Deformable models have shown great potential for image segmentation. They include discrete models whose combinatorial formulation leads to efficient and sometimes optimal minimization algorithms. In this paper, we propose a new discrete framework to deform any partition while preserving its topology. We show how to combine the use of multilabel simple points, topological maps and minimum-length...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملA Topology Preserving Level Set Method for Geometric Deformable Models
Active contour and surface models, also known as deformable models, are powerful image segmentation techniques. Geometric deformable models implemented using level set methods have advantages over parametric models due to their intrinsic behavior, parameterization independence, and ease of implementation. However, a long claimed advantage of geometric deformable models — the ability to automati...
متن کامل